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Self-Consistent Method for Determining the Boundary Shape between a Plasma and a 
Magnetic Field 
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A calculational method of determining the boundary surface between a plasms and a magnetic 
field is deecribed. The method consists of neglecting the curvature of the surface and approximating 
the magnetic field adjacent to the boundary by a sum of the field due to the local d a c e  current 
and the plasma-independent magnetic field source. This field is d in the boundary equations to 
compute the boundary surface. The resulting surface is then used to compute the magnetic W d  due 
to the curvature of the surface and the computat.ion of the boundary surface is repeated. Reiteration 
of the calculational steps is continued until a self-consistent solution is obtained in which the magnetic 
field resulting from the curvature of the previous surface is used to obtain a d a c e  w h e  B h t l p e  
does not differ from the previous surface by more than the imprecision of the calculation of the 
magnetic field. The method is illustrated by application to three simple problems of (1 ) a line dipole 
immersed in a plasma exerting a constant presm~e on the boundary, (2) a point dipole immersed in 
plasma exerting constant pressure, and (3) a line dipole in a plasma stream exerting a pressure 
in only one direction (parallel to the stream velocity). 

INTRODUCTION 

HE physics of the boundary layer between a 
plasma and a magnetic field has been discussed 

by several who have shorn that, if an 
electric field due to charge separation exists in the 
boundary layer, the boundary layer will u s d y  be 
very thin, 3.8 X 10s/n! cms, where ne is the num- 
ber of electrons/cc in the plasma. If the thickness 
of the boundary layer is very much less than the 
radius of curvature of the boundary, due either to 
the electric field in the boundary layer or a small 
ion cyclotron radius in the magnetic field, then re- 
flection from a smooth boundary layer will be 
specular, for  the electric field perpendicular to the 
boundary and the magnetic field parallel to the 
boundary will be the same for the exit path of the 
particles as for their entrance path. In this case the 
particle pressure of the plasma on the surface is 
easily determined. 

The shape of the boundary surface is such that 
the electrical currents in the boundary layer cause 

Permanent addrees: University of California, Davis, 
California. 

2 J. Dungey, Cosmic Electrodynamics (Cambridge Univer- 
pity Pres ,  Cambridge, England, 1958). 

a M. JS. Rosenbluth, “Dynamics of a Pinched Gas” in 
Magnetohydrodynamics, edited by R. Landshoff (Stanford 
University Pres, Palo Alto, Califorma, 1957): 

4 W. Paakievici, .4. Sestero, and H. Weitzner, Courant 
Institute of Mathematical Sciences, New York Univeraty, 
Rept. NYO 9193 (1962). 

V. C. A. Ferraro, J. Geophys. Res. 57, 15 (1952). 

J. Hurley, P h p .  Fluids 6, fB (1963). 
6 D. B. Beard, J. Geophys. Res. 65,3559 (1960). 

the magnetic field (due to surface currents and 
plasma-independent sources of field) to be zero in 
the plasma and the magnetic pressure adjacent but 
exterior to the plasma to be equal to the particle 
pressure on the boundary. Unfortunately the bomd- 
ary shape cannot be calculated, in general, from these 
boundary conditions until the field adjacent to the 
boundary is known, and the field adjacent to the 
boundary cannot be determined until the shape of 
the boundary is known. h calculational method of 
surmounting this circular difficulty is to neglect all 
fields due to the surface currents except the field 
due to the surface current at the point where the 
surface is being calculated (the bocaE surface-cnrrent 
field). This reduces the statement of the problem of 
the surface calculation to a differential equation. 
This h t  approximation yields a very good approxi- 
mate boundary shape in those regions where the 
surface current does not vary greatly in direction 
or magnitude as one moves a significant fraction 
of the curvature radius along the surface. Near a 
surface singularity such as exists over a magnetic 
dipole, the first approximation is very poor. In 
any case, however, the differential equation may be 
solved in order to yield a first approximation surface 
as a second link in a reiterative procedure which 
ultimately converges to a self-consistent 3eld and 
surface. The complete magnetic field resulting from 
the currents on this surface may be computed nu- 
merically and then be used to compute a second 
surface. A surface is thus rapidly obtained which 
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yields fields which do not differ from the previous 
surface and fields by more than the numerical im- 
precision with which the fields are computed. 

Some questions concerning the reliability of the 
first approximation of this method have legitimately 
been raised recently by Midgley and Davis7 who 
used an especially severe example for testing the 
method in that the problem they chose contained a 
bad singularity. On the other hand, Hurley' and 
then Spreiter and Briggs' have illustrated the excel- 
lence of the first approximation by comparing the 
approximate result to the exact solution when ap- 
plied to a more tractable problem. Although the 
first approximation6 and in a crude fragmentary way 
the second approximation" have been described 
before when applied to a point dipole in a steady 
zero-temperature plasma wind, a complete self- 
consistent solution of any problem has never been 
given. In the following we apply i t  to three ele- 
mentary problems which have been solved previously 
by other ineans to illustrate the method and to 
demonstrate its effectiveness and rapid convergence. 

METHOD 

We seek a surface whose equation in spherical co- 
ordinates is F(r ,  0, 4) = constant. Let the constant 
be zero and let 

FORMAL STATEMENT OF THE SELF-CONSISTENT 

F(r, e, 4) = r - R(e,+) = 0. (1) 

A, = VF/IVFI, (2) 

The unit normal vector to the surface, d., is given by 

The boundary conditions in terms of the magnetic 
field B, adjacent to the boundary and exterior to 
the plasma are 

and 

where p is the particle pressure of the plasma on the 
boundary and the units are mks units. A further 
occasionally useful boundary condition is that there 
is no magnetic field in the plasma. The first approxi- 
mation consists of letting 

d,-B = 0 (3) 

(4) Id. xBIZ = 2 Pop, 
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B ='So + B,, (5) 
where Bo is the magnetic field due to any source 
other than the surface currents on the boundary 
and B, is the magnetic field due to a surface cur- 
rent in a plane. It is the magnetic field due to the 
local surface current and would be exactly correct 
if the surface curvature were infinite. Since the 
magnetic field is equal in magnitude and opposite 
in direction on the opposite sides of a current in 
a plane, in the plasma where the total magnetic 
field is zero, B, = -b, x Bo, and hence outside the 
plasma 

fia X B  = 2 bs xB0. 

Maxwell's equations are, of course, not satisfied in 
this first approximation. The surface currents may 
not even be conserved, but the surface shape, aside 
from singularities, is a good one. The equations do, 
however, become satisfied in higher approximation. 

When Eqs. ( 2 )  a i d  (6) are substituted in Eq. (4) 
using a given field configuration Bo and a given 
particle pressure p ,  the resulting differential equa- 
tion is solved analytically or numerically, and a 
surface is obtained. The field due to the curvature 
of this surface is given by 

(6) 

B, = "/-&, J xr' 
43r T t 3  

(7) 

where r' is the vector from a point on the surface 
a t  which B, is evaluated to the differential surface 
element ds bearing a surface current J. The change 
in the tangential component of the field in crossing 
a current sheath is given by be x B  = poJ where J 
is the sheath current per unit length perpendicular to 
the current vector and the change in magnetic 
field is B for our work since the field in the plasma is 
assumed zero. Therefore the current magnitude is 
given in terms of the pressure by 

Since Eq. (7) represents a correction field due to 
the curvature of the surface, the point at which Bo 
is evaluated must be at the center of the surface 
layer (not infinitesimally to one side of it since 
then Bo would include the field from the local sur- 
face current, the planar field). One effective method 
we used in evaluating this integral, which also helped 
to smooth out the effect of any spurious surface 
ripple, was to evaluate Bo at two pairs of points 
on each side of the surface, to average the field of 
each equidistant pair and then to extrapolate the 
two results to the center of the surface. That is, 
evaluate the field at r + sl, r - sl, r + s2, and 
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r - s,, where s, niid sL are .mall di~plac.eiiic~nt~ 
peiptmdicular to the mrface. then 

B,(r) = D , ( r  + sd + B,(r - sJl 
- $LB.(r + sJ + B,(r - sL) - B,(r + s , )  

- B,(r - s,)]s,/(s2 - s,). (9) 

In the becond and higher approximations, Eq. (5) 
is replaced by 

B = Bo + B, + Bo. 

Since B,, ciiit4de the surface is equal in magnitude 
and oppodte in direction to B, inside the suiface 
and B out4de the iurface is zero, B, iiiside the 
surface i5 

(10) 

B,, = B,, + B,. 

I3 = 2@” + EJ 

In, x (Bo + €3,) I = =kb0/2):p’. 

Therefore 

and l<q. (4) yields the full equation 

(11) 

A LINE DIPOLE IN A HOT AMBIENT PLASMA 

- The problem of a line dipole surrounded by a 
hot plasma exerting a constant presaure everywhere 
on the boundary of the magnetic field has been 
solred exactly by Cole and Huth” using a confornial 
mapping technique. We use this simple tv-o-dimen- 
sional example as a particularly exacting test of the 
self-coniistent method since it ha.; a singularity 
over the pole. In two dimensional polar coordinates 
the magnetic field from the plasiiia-indepeiident 
source (suppobedly two infinite antiparallel current 
bearing wires) is \mitten 

B, = (ni/r’)(sin e i  - COS e e), (12) 

where M is the two-dimensional dipole moment 
strength and 6 is measured from the magnetic 
equator. 

r’ sin ( e  - e0)[rr2 + (dR’/de)2] de 

__- 
l1 J. D. Cole and J. H. Huth, Phys. Fluids 2, 624 (19.59). 
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FIG. 1. A linr dipnlr in ‘1 !?et y l ~ s x n .  The L-st nzd s.cond 
Iterated plasma-field boundtEr). surfaces of the standard self- 
consistent approximation (,n.X B:’ = 3pp0) appropriately 
labeled. The exact solution duc to  Cole and Huth11 is indicated 
by the open circles. 

(14) 
where BL is ( p o p  %)l” by use of Eq. (8). At the 
iiiagiietic equator, Eqs. (6) and (4) yield a con- 
venient w i t  of length, ro, defined by 

ro = ( 2 d P / p , p ) ‘ .  (15) 

This i, the height of the Imnidary surface a t  the 
magnetic equator in firbt approximation. 

Any one of the three bouiidary coiiditioiis may 
be used to  obtain a self-consistent solution. In all 
cases, howeyer, the most satibfactory boundary con- 
dition from a convergence standpoint is obtained 
with Eq. (11). We will refer to this as the standard 
self-consistent approsirnation 

d l l  
do 

(sin e + r’B,,)(cos 0 - r2Bog) 
(sin e + T’BJ - r4 = r  - 

?[(sin e + T ~ R ~ ~ ) ~  + (COS e - T’BJ - r4]* 
-, (17) - 

(sin e + r2B,,)’ - r4 

where the subscripts cr and et? refer to the com- 
ponents of the curvature field and all distances are 
measured in units of ro. One difficulty which in- 
variably arises with this boundary condition is that 
the argument of the square root appearing in Eq. 
(17) is the square of the total magnetic field outside 
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FIG. 2.  A line dipole in a hot pl3s111:~. Thc first, second, 
and third iterated plasma-field boundary surfaces based on 
the boundary condition that the field near the boundary 
layer is a constant. The cxact solution is indicated 1)s open 
circles. 

the surface which in the ultimate solution is zero. 
The approximate magnetsic fields used in this argu- 
ment can add up to a total field less than zero a i d  
thus no real solution to the surface equation exist's 
for some approximate magnetic fields. Either an 
arbitrary surface must, he invented in the region 
where no solutioii csists or a new calculational 
procedure must he used. One simplc and successful 
procedure, which we frequently adopted, was to 
take the square root of 6he ahsolute value of the 
argument of the square root and change the sign 
of the square root when the argument was negative. 
The first, second, and third surfaces resulting from 
Eq. (17) and the use of an IBAI 709-1 machine com- 
puter are compared to the exact solution in Fig. 1. 
The problem can be iterated on a machine for as 
many times as desired and many surfaces obtained 
all within the error made in computing the curva- 
ture magnetic field. The choice of which surface to 
take and when to  stop the iteration can be decided 
by the Midgley and Davis criterion of surface ac- 
curacy, namely computing the ratio of the field 
in the plasma (which should be zero) to the dipole 
field alone. 

The precision of the final result, independent of 
the boundary condition used to  obtain it, depends 
on the precision with which the surface curvature 
field (the iionlocal field) is computed. The size of 
the interval used in the numerical integration and 
the trouble taken with the singularity occurring in 
the surface integration must be chosen as a com- 
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FIG. 3. A line dipole in :L hot plasma. The first, third, fifth, 
and eleventh iterated plnsma-fi~ld boundary surf aces based 
on the boundary condition that n;B = 0. The c w t c t  solution 
is indic:ited hy open circles. 

promise between machine time and desired accuracy. 
The first approximate surface is so easy to obtain 
that, i t  can invariably be obtained without the use - 
of a machine computer. The machine time required 
by the higher order approximations is taken up 
with the surface integration required for computing 
B,. Approximately two and a half minutes was re- 
quired for each iteration if one degree intervals 
were used. We have found one degree integration 
iiitervals result in a surface error of no more than 
two percent in these simplc test problems. Other 
methods'"' of finding the boundary surface face 
the same problem of computing the surface fields 
with an optimum choice of integration interval for 
least machine time for the precision desired. 

Two other boundary conditions are possible which 
may also be used to give a self-consistent solution. 
(i) The magnetic field is a constant adjacent to the 
plasma so that 

The first, second, and third surfaces resulting from 
this algebraic equation and the use of an IBXI 7094 
machine computer are compared to the exact solu- 
tion in Fig. 2. (ii) Use of Eq. (3) for this problem 
leads to the simple differential equation 

dR/dO = r[(sin e + r2B,,)/(cos 0 - r2Bcd] .  (19) 

R. J. Slutz, J. Geophys. Res. 67, 505 (1962). 
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12 it seems to be near any singularity (cusp) in a 
boundary surface. We choose this problem in order 
to examine how the method fares in higher ap- 

The dipole magnetic field in polar coordinates is 

B, = (--M/rs)(2 COS 8 i + sin 0 e) (20) 

The unit surface normal vector has been given in 
Eq. (2s). Due to symmetry, however, there is no 
dependence on 4. The curvature field, Eq. (7), is 
obtained from 

1.0 proximation. 

1 given by 

d 

3 

.4 

Be I E s,' 1,'' + ( a ' / d 8 ) 7 '  
.2 'R [(a + X I 2  + z7+ 

E 0 1 2  
2 .4 J .. 1.0 1.2 e{:[ -K(k)  + (u - z)' + 2" 

u2 + x2 + zz 

- 2 2  - 2' nn-\lc\ 2 n + r K(lr\ $- x)2 + z2 UP/ JLJ u w l  izij FIG. 4. A point dipole in a hot plasma. The first, second, 
and thiid iterated pllnmn_~-fk!d hc-xdzry szrfacc~ ~f thz 
standard eelf-consistent approximation U&.,XBI* = 2pro). 
The solution due to Midgley and Davis7 is indicated by open 
circles. 

L-""' (Q - 
where ~ ( k )  and ~ ( k )  are elliptic integrals of the 
first and second kind, and 

The first, third, fifth, and eleventh surfaces resulting 
from Eq. (19) and the use of an IBM 7094 machine 
computer are compared to the exact solution in 
Fig. 3. This boundary condition results in an 
especially slow convergence of the iterative process. 

A POINT DIPOLE IN A HOT AMBIENT PLASMA 

The problem of a point dipole surrounded by a 
hot plasma exerting a constant pressure everywhere 
on the boundary of the magnetic field has been 
solved approximately by Midgley and Davis' and 
Slutz." Midgley and Davis' have shown that their 
solution obtained by a moment technique gives a 
magnetic field in the plasma of about of the 
dipole field except near the magnetic pole. (Because 
of the difficulty in magnetic field computation their 
excellent ratios are not computed absolutely but 
in comparison to a sphere with the current pro- 
portional to sin 0 which enables them for comparison 
purposes to approximately calculate a dipole field 
by means of the same field-calculational method.) 
Their surface is thus a good comparison surface 
except within 5" of the pole where their surface fails 
to approach the polar axis with sficiently steep 
slope. (An infinite slope a t  the axis is required from 
theoretical considerations.) Midgley and Davis chose 
this problem partly as a test of the first approxi- 
mation to the self-consistent method 8nd found that 
near the magnetic pole the first standard self- 
consistent approximation is rather poor as indeed 

t 

z = r cos 8, - r' cos 8, Q = r' sin 8, x = t sin e,, 
k = (4az)*[(u + 2)' + za]-*, 

where ~ ' ( 8 )  is a dependent variable and r(0,) is the 
point a t  which B, is computed. The height of the 
boundary surface a t  the magnetic equator in first 
approximation is used as the length unit in which 
all distances are measured: 

to = ( 2 ~ ' / r ~ p ) * .  (22) 

Equation (11) for this problem becomes 

dR 
de 

-(2 GOB 8 + r3B,,)(sin e + ragee) - = r  
(2 co8 8 + r3B.J2 - r" 

t3[(sin e + raBc0)' + (2 cos e + r'~,,)' - r''It. 
(2 cos e + r3B,,)' - r" + 

(24) 
The behavior and physical significance of the square 
root in Eq. (24) has been commented on previously 
following Eq. (17). The first, second, and third 
surfaces resulting from Eq. (24) are compared with 
the Midgley and Davis and Slutz solution in Fig. 4. 
The magnetic field was computed in the plasma at 
various points as Midgley and Davis did in testing 
their solution. The third surface gave a ratio of the 
field in the plasma to the dipole field which is less 
than or equal to the estimated imprecision in the 
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surface curvature field computation everywhere. 
Thus in three short steps we were able to converge 
to a self-consistent surface for this particularly diffi- 
cult test of the technique. 

The null component of B perpendicular to the 
boundary can also be used to obtain a solution. 
Use of Eq. (3) for this problem leads to the dif- 
ferential equation 

&/de = r[(2 COS 0 + r3B,,)/(sin 0 + r3Bce)]. (25) 
The first, twelfth, twenty-first, and forty-sixth sur- 
faces resulting from Eq. (25) are compared to the 
Slutz and Midgley and Davis solution in Fig. 5 .  

A LINE DIPOLE IN A COLD PLASMA WIND 

The problem of a line dipole upon which a cold 
plasma blows, whose ions and electrons all have 
identical velocity perpendicular to the dipole, has 
been solved exactly by Zhigulev and Romi~hevskii,'~ 
Hurley,* and Dungey.14 I t  more closely resembles 
the original problem to which the self-consistent 
method was applied6 (the geomagnetic dipole in 
the solar wind) than the other problems do. Be- 
cause of the great interest of the geophysical prob- 
lem, the line dipole is of exceptional interest as a 
test of the convergence of the method. 

Since the particles are specularly reflected at the 
boundary layer, the pressure on the boundary is 
given by 

p = (nu cos $)(2mu cos J.) 
(26) 

where the first expression in parentheses is the 
number of ions striking the surface per unit area, 
the second is the change in momentum of the ions, 
and J.  is the angle between the normal to the sur- 
face and the wind velocity vector. The velocity 
vector of the wind is 

Therefore 

= 2nmu' cos' J .  = p ,  cos' J., 

v = U(COS e f  - sin e e) .  

p = p,(fi;$)* 

= p,(cos 0 + ; z s i n  1 dR 8)'/[1 + $gr]. (27) 
When Eqs. (12) and (27) are substituted into Eq. 
(11) we obtain 

. -  
Is V. N. Zhigulev and E. A. Romishevskii, Dokl. Akad. 

Nauk SSSR 127, 1001 (1959) [English transl.: Soviet Phys.- 
Doklady 4, 859 (1959)l. 

14 J. Dungey, J. Geophys. Res. 66, 1043 (1961). 
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FIG. 5. A point dipole in a hot plasma. The first, twelfth, 
twenty-first, and forty-sixth iterated plasrna-field^ boundary 
surfaces based on the boundary condition that n,.B = 0. '- 

Midgley and Davis'' solution is indicated by open circles. 

(29) _ -  dIz  - r cot e 
dB 

1 - r'(1 + sec 8 Bee) 
1 + r'(1 + csc 0 Bcr)'  

The sign in the square root is taken so that the 
right-hand side of Eq. (11) will be positive; since 
I?;$ must always be negative in order for the 
external surface of the plasma to always be pre- 
sented to the wind, the negative sign of the square 
root must be taken. At the neutral point, the point 
where v is parallel to the surface and fi,*$ = 0, B 
and the surface current change direction so that 
the left-hand side of Eq. (28) must be multiplied 
by a minus sign to keep i t  positive. Hence beyond 
the null point the surface equation becomes 

(30) 
dR - = r cot e 
dB 

1 - r'(sec e Bee - 1) 
1 + r2(csc eB,, - 1)' 

The curvature field is given by 
'* [T' cos 0 + (dR'/dO) sin e] 

+ r2 - 2rr' cos ( e  - e,) 
. (rlsin ( e  - e,)? + [r - r'sin ( e  - O , ) ] e )  dB 

[r' COS e + (dR ' /de)  sin e] 
TIz + r2 - 2rr' cos ( e  - e,) 

{r'sin ( e  - e,)? + [r - r' sin ( e  - c;,)]8} de, (31) 
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2 4 6 0 1 0  

FIG. 6.  A line dipole in a rold plasma wind. The first, second, 
and third iterated plasma-boundary surfaces of the stand- 
ard self-consistent approximation. The exact solution is 
indicated by open circles. 

where 0, is the position of the neutral point. The 
resulting first, second, and third surfaces are com- 
pared to Hurley's graph of his exact solution in 
Fig. 6. Sote that the first approximation is s o m e  
what arbitrary in that the solution on the lee side 
of the line dipole is simply that solution of Eq. (31) 
which intersects the windward surface a t  the pole 
(the neutral point of the first approximation) ; the 
discontinuity in the derivative causes an infinite 
curvature field perpendicular to the surface at this 
point but i t  smooths out in higher approximation. 

CONCLUSIONS 

A method of determining the shape of the bound- 
ary between a plasma and a magnetic field has been 
described and illustrated by application to the three 
simple cases of a line dipole with a constant plasma 
pressure everywhere on the boundary, a line dipole 
with a variable plasma pressure on the boundary 
which depends on the direction of the surface nor- 
mal, and a point dipole subject to a constant plasma 
pressure on the boundary. The method consists of 
first calculating the surface using an approximate 

magnetic field which ignores the curvature of the 
surface, then u&ig the magnetic field computed 
from the currents Bowing on this first surface and 
so on until no significant change results between 
two consecutively calculated surfaces. We have 
called this the self-consistent method since the mag- 
netic field computed from the last calculated surface 
will yield the same surface if it is used to calculate 
the surface again. 

The most diEcult and machine-time consuming 
part of the calculation turned out to be computing 
the magnetic fields. The self-consistent method in 
every case quickly converged to the final result by 
the third computed surface. The precision of the 
final result xas  always limited by the precision with 
which the magnetic fields were computed. 

-1s a final test of the stability of the method, the 
esact surface or best preriously computed answer 
(Midgley and Davis for the point dipole) was used 
as a starting surface and the problem was run on 
the machine for ten or more iterations. The final 
surface (except for a better polar solution for the 
point dipole) Wered from the starting surface in 
this instance by less than the imprecision in com- 
puting the fields. This agreement gave us some con- 
fidence that when the correct magnetic fields are 
used, the method will not lead to an instability in 
which succeeding surfaces will start to wander from 
the true surface giving more and more misleading 
magnetic fields. 
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